JOINT STOCK COMPANY
"UNITSKY SCIENTIFIC \& PRODUCTION COMPANY"

PROPOSAL

HIGH-SPEED TWO-WAY CARGO AND PASSENGER STRING TRANSPORT ROUTE

"ABU DHABI - DUBAI - SHARJAH"

Moscow 2001

High-Speed Two-Way Cargo and Passenger
String Transport Route
"ABU DHABI - DUBAI - SHARJAH" (138 km)

Unitsky String Transport System (UST) represents a string-rail road with four wheeled high-speed transport modules (avtolets or autoplanes) moving over them at the speeds of 100 to 500 km per hour and having passenger capacity of 1 to 40 persons, and nominal cargo load of 10 tons.

The distinguishing feature of the system is the strings inside a rail, pulled out with the total force of about 250 tons per one string-rail.

Strings are tightly attached to the anchor supporters, placed at every $500-2000$. The intermediate supporters of $10-50 \mathrm{~m}$ high, placed at every $50-$ 100 m support the string route structure.

Picture 1. Variant of the UST route "Abu Dhabi - Dubai - Sharjah"

Picture 2. Passenger module: a) external design; b) interior.

- Capacity - 25 passengers.
- Calculated cruise speed $-250 \mathrm{~km} / \mathrm{h}$.
- Design (ultimate) speed - $350 \mathrm{~km} / \mathrm{h}$.
- Engine drive: internal combustion engine (diesel) - 120 KWt powerful.
- Fuel consumption (diesel fuel) at the cruise speed $200 \mathrm{~km} / \mathrm{h}-12$ litre/per 100.

Picture 3. Cargo module for container deliveries:
a) exterior design; b) arrangements of cargo and parts.

- Cargo capacity -6000 kg .
- Calculated cruise speed - $250 \mathrm{~km} / \mathrm{h}$.
- Design (ultimate) speed - $350 \mathrm{~km} / \mathrm{h}$.
- Drive: internal combustion engine (diesel) - 75 KWt powerful.
- Fuel consumption (diesel fuel) at the cruise speed of $250 \mathrm{~km} / \mathrm{h}-7.5$ litre/ 100 km .

Picture 4. Cargo module for transporting liquids (oil and oil products, potable water, etc.): a) exterior design; b) arrangement of tanks and parts.

- Cargo capacity -6000 kg .
- Calculated cruise speed $-250 \mathrm{~km} / \mathrm{h}$.
- Design (ultimate) speed $-350 \mathrm{~km} / \mathrm{h}$.
- Drive: internal combustion engine (diesel) - 75 KWt powerful.
- Fuel consumption (diesel fuel) at the cruise speed of $250 \mathrm{~km} / \mathrm{h}-7.5$ litre/100 km.

Technical and Economic Characteristics of a two-way UST High-Speed Route "ABU DHABI - DUBAI - SHARJAH"

Type of string road route - cargo and passenger route.
Distance range - 138 km .
Cost - USD 280 mln (See Table 1).
Calculated optimal speed of transport modules - 250 km per hour.
Time en route - 42 min .
Average height of supporters - 25 m .
Average flyover between the supporters - 50 m (at sea - 100 m).
Maximal passenger turnover:

- Passenger - 50 mln passengers per year.
- Cargo - 100 mln tons per year.

Self-cost of transportation (distance 138 km):

- One passenger - USD 1,5.
- One ton of cargo - USD 1,5.

Expected passenger turnover (distance 138 km) - 12 mln passengers per year.
Expected cargo turnover (distance 138 km) - 6 mln tons per year.

Table 1
Approximate cost of the UST route "Abu Dhabi - Dubai - Sharjah"

UST Route Composition Parts	Volume of the work	Cost of one unit of work, in thousands of USD	Total cost, in ihousands of USD
1. Transport route, total, including:	138 km	-	142,800
1.1. Route structure	138 km	450	62,100
1.2. Basements and supporters 1.3. Technical control system over the sate and condition of route structure	138 km	550	75,900
1.4. Radio rely system of control of transport traffic	138 km	11,6	1,600
2. Cost of infrastructure, total, including:	-	23,2	3,200
2.1. Stations	-	60,000	
2.2. Cargo terminals	3	5000	15,000
2.3. Depot and repair shops	3	10000	30,000

UST Route Composition Parts	Volume of the work	Cost of one unit of work, in thousands of USD	Total cost, in thousands of USD
3. Modules, total, including:	-	-	16,400
3.1. Passenger modules	90	100	9,000
3.2. Cargo modules	220	20	4,400
3.3. Technical support reserve modules	30	50	1,500
3.4. Technical control over the state of the route and emergency support	10	150	1,500
4. Cost increase on more complicated route crossings (going through mountain, costal sea, trespassing the communications)	30 km	500	15,000
5. Engineering prospecting works	150 km	20	3,000
6. Design works for route structure, modules, infrastructure and control systems	-	-	20,000
7. Other costs and unforeseen costs	-	-	21,300
Total:	-	-	280,000

Expected passenger turnover

1 two-way trip for each country resident and tourist: 12 mln passengers per year ($2 \mathrm{trips} \times(3 \mathrm{mln}$ people +3 mln people $)$).

Expected cargo turnover

2 tons of cargo per each country resident: 6 mln tons per year.

Amount of transport modules needed

1. Passenger module (25 seats).

One module will make 24 trips per 24 hours. At the average occupancy coefficient of 0.8 and average module use coefficient of 0.8 , each module will transport 384 passenger per 24 hours, and 140,000 per year. That is in order to transport 12 mln of passengers per year 86 modules are needed.
2. Cargo module (capacity 6 tons).

One cargo module will make 20 trips per 24 hours. At the loading coefficient of 0.8 of and module use coefficient of 0.8 , each module will
transport 76 tons of cargo per 24 hours and 27,700 tons per year. In order to transport 6 mln tons of cargo per year 220 cargo modules are needed.

Time en route

Time spent by passenger on trip from the Abu-Dhabi Center to the Center of Sharjah will be 42 min (See Table 2).

Table 2

№	Type of transportation process	Time, in min
1	Waiting for boarding	1
2	Passenger boarding	1.5
3	Waiting for trip	0.5
4	Merging the transport module into the traffic flow	0.5
5	Boosting the speed up to $250 \mathrm{~km} / \mathrm{h}$	1.5
6	Moving en route	32
7	Breaking the transport module	1.5
8	Entering the station	1
9	Unboarding passengers	1.5
10	Unforeseen losses of time	1
Total:		42

Economic efficiency and profit return

At the cost of the trip "Abu Dhabi - Dubai - Sharjah" at USD 5 (selfcost of the trip is USD 1.5 per passenger) and the cargo tariff of USD 5 per ton (self-cost is USD 1.5 per ton), the yearly return from the string route exploitation will be:

$$
\begin{gathered}
\mathrm{D}=12.000 .000 \text { pass. } \times(5-1,5) \text { USD/passenger }+ \\
6.000 .000 \mathrm{t} \times(5-1,5) \text { USD/t }=63.000 .000 \text { USD. }
\end{gathered}
$$

The route will return the investments in 4.5-5 years.
Profit efficiency of the route will be 100-200\%, depending on the level of taxation.
© Anatoly E. Unitsky, 2001
General Designer of UST,
Director of UN Habitat Project No. FS-RUS-98-S01
"Sustainable Development of Human Settlements and Improvement of their Communication Infrastructure through the Use of a String Transport System" (1999-2000)

2, Sadovniki st.,
Moscow, 115487, Russia
Tel. (7-095) 118-52-55/54-65
Tel./fax: (7-095) 118-02-38
http://www.mtu-net.ru/yunitran
E-mail: yunitran@mtu-net.ru

