РАСЧЕТ СТАТИЧЕ	СКОГО УГЛА Н ПОДВЕСНОГО	НАКЛОНА ДВУ) МОДУЛЯ	ХРЕЛЬСОВОГО

Введение

Целью данного расчета является определение статического угла наклона транспортного модуля, находящегося в середине двухструнного пролета с продольной асимметрией струн (начальные прогибы струн не одинаковые), при наличии бокового ветра и одностороннего смещения нагрузки (например, 25 пассажиров массой 80 кг каждый, равномерно заполнившие одну половину салона).

Составлена программа, позволяющая по следующим исходным данным:

масса модуля, Mмасса нагрузки, т расстояние между опорами струн, L_{α} смещение центра масс нагрузки модуля от продольной плоскости симметрии модуля, L_l расстояние между струнами, L_p ширина кабины модуля, L_k расстояние между центром парусности боковой поверхности и полом салона, Hрасстояние между полом салона и центром масс ненагруженного модуля, hрасстояние между центром масс ненагруженного модуля и головкой рельса, dначальный прогиб струны №1 (прогиб без модуля), f_{HI} начальный прогиб струны №2 (прогиб без модуля), f_{H2} плотность воздуха, ρ коэффициент аэродинамического сопротивления, С площадь продольного сечения модуля, $S_{\delta o \kappa}$ поправочный коэффициент, зависящий от высоты над уровнем земли, kплощадь поперечного сечения стальной части рельса, S_{cm} модуль упругости стали, E_{cm} площадь поперечного сечения алюминиевой части рельса, S_{an} модуль упругости алюминиевого сплава, E_{an}

вычислять угол наклона салона транспортного модуля и реакции струн.

Воздействием ветра на струны, а также крутящим моментом, возникающим вследствие поперечного наклона струн, пренебрегаем.

1. Зависимости положенные в основу расчета

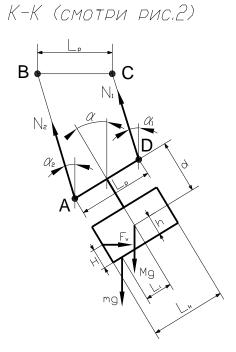


Рис.1. Схема действующих сил

Согласно схеме на рис. 1 уравнения статики имеют вид (сумма моментов берется относительно центра масс ненагруженного модуля):

$$\begin{split} &N_{1}\cdot\cos(\alpha_{1})+N_{2}\cdot\cos(\alpha_{2})-m\cdot g-M\cdot g=0\\ &F_{v}-N_{2}\cdot\sin(\alpha_{2})-N_{1}\cdot\sin(\alpha_{1})=0\\ &m\cdot g\cdot(L_{l}\cdot\cos(\alpha)-h\cdot\sin(\alpha))+F_{v}\cdot\left((h-H)\cdot\cos(\alpha)+\frac{L_{k}}{2}\cdot\sin(\alpha)\right)+\\ &+N_{1}\cdot\frac{L_{p}}{2}\cdot\cos(\alpha-\alpha_{1})-N_{1}\cdot d\cdot\sin(\alpha-\alpha_{1})-\\ &-N_{2}\cdot\frac{L_{p}}{2}\cdot\cos(\alpha-\alpha_{2})-N_{2}\cdot d\cdot\sin(\alpha-\alpha_{2})=0 \end{split} \tag{1.1}$$

где N_1 , N_2 – реакции струн,

M, m — массы ненагруженного модуля и пассажиров в салоне соответственно,

 α_1 , α_2 — углы отклонения плоскости струн от вертикали,

 α — угол наклона модуля,

 L_l – смещение центра масс нагрузки модуля от продольной плоскости симметрии модуля,

 L_p – расстояние между струнами,

 L_k – ширина кабины модуля,

Н – расстояние между центром парусности боковой поверхности и полом салона,

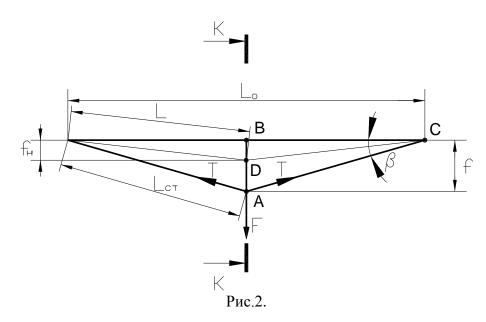
h – расстояние между полом салона и центром масс ненагруженного модуля,

d – расстояние между центром масс ненагруженного модуля и головкой рельса,

 F_{v} — сила воздействия ветра.

$$F_{\nu} = \frac{1}{2} \cdot C \cdot k \cdot \rho \cdot S_{\delta \sigma \kappa} \cdot V^{2} \tag{1.2}$$

где C – коэффициент аэродинамического сопротивления,


k – поправочный коэффициент зависящий от высоты над уровнем земли,

 $S_{\delta o \kappa}$ – площадь продольного сечения модуля,

 ρ – плотность воздуха,

V – скорость ветра.

Реакции N_1 и N_2 являются функциями прогиба (f_1 и f_2) струн. Для определения этих зависимостей будем считать, что струна обладает только жесткостью на растяжение и образует стороны равнобедренного треугольника как показано на рис. 2.

Согласно схеме на рис. 2 уравнение статики будет иметь вид:

$$F - 2 \cdot T \cdot \sin \beta = 0 \tag{1.3}$$

где F – сила действующая на струну со стороны модуля,

T — сила натяжения струны,

 β – угол наклона струны.

Для треугольника *АВС* можно записать:

$$\sin \beta = \frac{2 \cdot f}{L + \delta L} \tag{1.4}$$

где f – прогиб струны,

L – длинна струны без нагрузки со стороны модуля,

 δL – удлинение струны под действием нагрузки со стороны модуля.

Согласно закону Гука натяжение струны:

$$T = \frac{E \cdot S}{L_{cm}} \cdot \delta L \tag{1.5}$$

где S – площадь поперечного сечения упругих материалов струны, L_{cm} – длинна струны под действием нагрузки со стороны модуля,

E – приведенный модуль упругости материалов струны.

$$E = \frac{E_1 \cdot S_1 + E_2 \cdot S_2}{S_1 + S_2} \tag{1.6}$$

где E_1 и E_2 — собственные модули упругости материалов струны (сталь, алюминий), S_1 и S_2 — площади занимаемые материалами в сечении струны Из соотношений в прямоугольных треугольниках ABC и DBC (рис. 2):

$$\delta L = L_{cm} - L = \sqrt{4 \cdot f^2 + L_o^2} - \sqrt{4 \cdot f_H^2 + L_o^2}$$
(1.7)

где L_o – расстояние между опорами,

 f_{H} – начальный прогиб струны (без модуля).

Объединяя (1.3)-(1.5) и (1.7) получаем зависимость между нагрузкой на струну и ее прогибом:

$$F = \frac{4 \cdot E \cdot S \cdot f \cdot (\sqrt{4 \cdot f^2 + L_0^2} - \sqrt{4 \cdot f_u^2 - L_o^2})}{4f^2 + L_o^2}$$
(1.8)

По соотношениям в четырехугольнике ABCD (рис. 1) составляются два дополнительных уравнения связывающие прогибы струн ($f_2 = AB$, $f_I = DC$) с возникающими при этом углами:

$$L_{p} \cdot \cos(\alpha) = L_{p} - f_{2} \cdot \sin(\alpha_{2}) + f_{1} \cdot \sin(\alpha_{1})$$

$$L_{p} \cdot \sin(\alpha) = f_{2} \cdot \cos(\alpha_{2}) - f_{1} \cdot \cos(\alpha_{1})$$
(1.9)

Объединяя зависимости (1.1), (1.8) и (1.9) получаем систему уравнений (1.10):

$$\begin{cases} N_1 \cdot \cos(\alpha_1) + N_2 \cdot \cos(\alpha_2) - m \cdot g - M \cdot g = 0 \\ F_v - N_2 \cdot \sin(\alpha_2) - N_1 \cdot \sin(\alpha_1) = 0 \\ m \cdot g \cdot (L_l \cdot \cos(\alpha) - h \cdot \sin(\alpha)) + F_v \cdot \left((h - H) \cdot \cos(\alpha) + \frac{L_k}{2} \cdot \sin(\alpha) \right) + \\ + N_1 \cdot \frac{L_p}{2} \cdot \cos(\alpha - \alpha_1) - N_1 \cdot d \cdot \sin(\alpha - \alpha_1) - \\ - N_2 \cdot \frac{L_p}{2} \cdot \cos(\alpha - \alpha_2) - N_2 \cdot d \cdot \sin(\alpha - \alpha_2) = 0 \\ L_p \cdot \cos(\alpha) = L_p - f_2 \cdot \sin(\alpha_2) + f_1 \cdot \sin(\alpha_1) \\ L_p \cdot \sin(\alpha) = f_2 \cdot \cos(\alpha_2) - f_1 \cdot \cos(\alpha_1) \\ N_1 = \frac{4 \cdot E \cdot S \cdot f_1 \cdot (\sqrt{4 \cdot f_1^2 + L_0^2} - \sqrt{4 \cdot f_{n1}^2 - L_o^2})}{4f_1^2 + L_o^2} \\ N_2 = \frac{4 \cdot E \cdot S \cdot f_2 \cdot (\sqrt{4 \cdot f_2^2 + L_0^2} - \sqrt{4 \cdot f_{n2}^2 - L_o^2})}{4f_2^2 + L_o^2} \end{cases}$$

2. Примеры расчета

Система уравнений (1.10) решается в пакете Matlab при помощи функции 'fsolve' (см. Приложение 1).

2.1. Исходные данные 1:

масса модуля, M	4000 кг
масса нагрузки, т	2000 кг
расстояние между опорами струн, L_o	200 м
смещение центра масс нагрузки модуля от продольной плоскости	
симметрии модуля, L_l	0.625 м
расстояние между струнами, L_p	1 м
ширина кабины модуля, L_k	2.5 м
расстояние между центром парусности боковой поверхности и	
полом салона, H	1.225 м
расстояние между полом салона и центром масс ненагруженного	
модуля, h	1 м
расстояние между центром масс ненагруженного модуля и	
головкой рельса, d	1.667 м
начальный прогиб струны №1 (прогиб без модуля), f_{HI}	2.5 м
начальный прогиб струны №2 (прогиб без модуля), f_{H2}	2.6 м
плотность воздуха, $ ho$	1.2 кг/м ³
коэффициент аэродинамического сопротивления, C	0.8
площадь продольного сечения модуля, $S_{\delta o \kappa}$	18m^2
поправочный коэффициент зависящий от высоты над уровнем земли, k	1.5
площадь поперечного сечения стальной части рельса, S_{cm}	0.00152m^2
модуль упругости стали, E_{cm}	$206 \Gamma \Pi a$
площадь поперечного сечения алюминиевой части рельса, S_{an}	0.00152m^2
модуль упругости алюминия, E_{an}	71 ГПа

Результаты расчета 1

Скорость ветра, <i>м/с</i>	0	5	10	15	20	25
N_1, H	28724	28675	28534	28310	28023	27697
N_2, H	30136	30186	30341	30622	31065	31718
а, град	5.60	5.83	6.50	7.64	9.28	11.48
f_I , M	4.50	4.50	4.49	4.48	4.47	4.46
f_2 , M	4.60	4.60	4.61	4.62	4.63	4.66

Таблица 2.1

2.2. Исходные данные 2:

расстояние между струнами, L_p

1.5 м

Остальные параметры см. "Исходные данные 1"

Результаты расчета 2

Таблица 2.2

Скорость	0	5	10	15	20	25
ветра, м/с						
N_1, H	28271	28206	28016	27710	27306	26827
N_2, H	30589	30655	30858	31222	31782	32588
а, град	5.11	5.3	5.90	6.90	8.35	10.29
f_{l} , M	4.48	4.48	4.47	4.46	4.44	4.42
f_2 , M	4.62	4.62	4.62	4.64	4.66	4.69

2.3. Исходные данные 3:

начальный прогиб струны №1 (без модуля), f_{H1} начальный прогиб струны №2 (без модуля), f_{H2}

2.5 м

2.5 м

Остальные параметры см. "Исходные данные 1"

Результаты расчета 3

Таблица 2.3

Скорость ветра, <i>м/с</i>	0	5	10	15	20	25
N_1, H	28252	28204	28063	27841	27556	27231
N_2, H	30608	30657	30811	31091	31532	32183
а, град	5.38	5.60	6.28	7.41	9.05	11.26
f_{I} , M	4.48	4.48	4.47	4.46	4.45	4.44
f_2 , M	4.58	4.58	4.58	4.59	4.61	4.64

```
% ВСЕ ПАРАМЕТРЫ ВВОДЯТСЯ В ЕДИНИЦАХ СИ
% Успешное решение системы должно сопровождаться сообщением: 'Optimization terminated successfully'
% в противном случае измените начальное приближение переменных
clear all; clc
global M m g V r C S k Ll h H Lk Lr d dn1 dn2 Lo Est Eal Sest Seal
V=49.7; %скорость ветра
С=0.8; % коэффициент аэродинамического сопротивления
% для перемены направления ветра на противоположное тому как показано на
% схеме значение С записывается отрицательным
r=1.2; % плотность воздуха
S=7.3; % площадь боковой поверхности
k=1.5; % поправочный коэффициент на высоту
т=2000; % масса пассажиров
М=4000; % масса пустого модуля
g=9.81; % ускорение свободного падения
Ll=0.5; % смещение центра тяжести людей от плоскости симметрии
% для перемены стороны в которую сместились пассажиры на противоположную тому,
% как показано на схеме, значение Ll записывается отрицательным
Lr=1.5; % расстояние между рельсами
Н=1.225; % расстояние от пола до центра парусности боковой поверхности
h=1; % расстояние от пола до центра тяжести модуля
d=1.667; % расстояние от центра тяжести до головки рельса
Lk=2; % ширина корпуса модуля
dn1=2.5; % прогиб струны 1 без нагрузки
dn2=2.6; % прогиб струны 2 без нагрузки
Sest=0.00152; % площадь стали в сечении
Seal=0.00202; % площадь алюминия в сечении
Lo=200; % расстояние между опорами
Est=206000*10^6; % модуль упругости стали
Eal=71000*10^6; % модуль упругости алюминия
eq1='N1*cos(a1)+N2*cos(a2)-M*g-m*g';
eq2='0.5*V^2*r*C*S*k-N2*sin(a2)-N1*sin(a1)';
eq3 = 'm*g*(L1*cos(a) - h*sin(a)) + 0.5*V^2*r*C*S*k*((h+H)*cos(a) + Lk*0.5*sin(a)) + N1*Lr*0.5*cos(a-a1) - N1*d*sin(a-a1) - N2*Lr*0.5*cos(a-a2) - N2*d*sin(a-a2)';
eq4='Lr-d2*sin(a2)+d1*sin(a1)-Lr*cos(a)';
eq5 = 'd2*cos(a2) - d1*cos(a1) - Lr*sin(a)';
eq6='4*(Est*Sest+Eal*Seal)*d1*((4*d1^2+Lo^2)^0.5-(4*dn1^2+Lo^2)^0.5)/(4*d1^2+Lo^2)-N1';
eq7='4*(Est*Sest+Eal*Seal)*d2*((4*d2^2+Lo^2)^0.5-(4*dn2^2+Lo^2)^0.5)/(4*d2^2+Lo^2)-N2';
```

```
s\{1\}='function y = Func(x)'; % заголовок
s{2}='global M m g V r C S k Ll h H Lk Lr d dn1 dn2 Lo Est Eal Sest Seal';
s{3}=N1=x(1); N2=x(2); a1=x(3); a2=x(4); a=x(5); d1=x(6); d2=x(7); y=x;'; % переменные
s{4}=['y(1)=' vectorize(eq1) ';'];
s{5}=['y(2)=' vectorize(eq2) ';'];
s\{6\}=['y(3)=' vectorize(eq3) ';'];
s{7}=['y(4)=' vectorize(eq4) ';'];
s{8}=['y(5)=' vectorize(eq5) ';'];
s{9}=['y(6)=' vectorize(eq6) ';'];
s\{10\}=['y(7)=' vectorize(eq7)';'];
filename=fullfile(pwd,'Func.m');
disp(['Текст файла ' filename ':'])
fprintf('% s \ n', s \ : \ );
fid=fopen(filename,'w');
fprintf(fid,'%s\n',s{:});
fclose(fid);
xinit=[20000 30000 0 0 0 2.5 2.6]; % начальное приближение
[xzero,yzero,eflag,opt]=fsolve('Func',xinit,OPTIMSET('MaxFunEvals',3000,'MaxIter',200));
fprintf('Количество вычислений функций: %d\n',...
 opt.iterations);
delete(filename)
N1=xzero(1)
N2=xzero(2)
NaklonModulya=xzero(5)/pi*180
Progib1=xzero(6)
Progib2=xzero(7)
```